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A long-wave evolution equation is used to study a falling film on a vertical plate. For 
certain wavenumbers therc exists a two-dimensional strongly nonlinear permanent 
wave. A new secondary instability is identified in which the three-dimensional 
disturbance is spatially synchronous with the two-dimensional wave. The instability 
grows for sufficiently small cross-stream wavenumbers and does not require a 
threshold amplitude ; the two-dimensional wave is always unstable. In addition, the 
nonlinear evolution of three-dimensional layers is studied by posing various initial- 
value problems and numerically integrating the long-wave evolution equation. 

1. Introduction 
A thin liquid layer flowing down an incline under the action of gravity is unstable 

to long-wave disturbances on the free surface. This surface-wave instability has been 
studied intensively since the early works of Yih (1955, 1963) and Benjamin (1957), 
as summarized by Lin (1983) and Lin & Wang (1985). Linear analyses show that the 
instability occurs for sufficiently long waves; i.e. there is a cutoff wavenumber 
beyond which the instability disappears. A number of weakly nonlinear analyses 
have been performed by Lin (1969), Gjevik (1970), and Pumir, Manneville & Pomeau 
(1983) among others, and these show nonlinear equilibration of initial unstable waves 
with wavenumbers near the cutoff value. The resulting finite-amplitude permanent 
waves are almost monochromatic when the initial wavenumber is very close to the 
cutoff value and become broader banded as the wavenumber is decreased toward 
longer waves. Lin (1974) studied the stability of the monochromatic permanent 
waves and showed that they are stable to sideband disturbances of Benjamin-Feir 
type. The full nonlinear behaviour of unstable layers including those with 
wavenumbers much smaller than the cutoff value has been studied (e.g. Pumir et al. 
1983 and Joo, Davis & Bankoff, 1991) by numerically analyzing the long-wave 
evolution equation of Benney type (1966). 

Some three-dimensional extensions of the aforementioned two-dimensional (no 
spanwise variation) studies have been done. Roskes (1970) generalized Benney’s 
evolution equation to three dimensions, and Krishna & Lin (1977) generalized Lin’s 
earlier stability analysis of two-dimensional monochromatic permanent waves to 
three-dimensional waves. Krishna & Lin, however, considered only oblique waves. 
As pointed out by Roskes (1970), an oblique wave is equivalent to a two-dimensional 
wave in rotated coordinates. The study of Krishna & Lin thus can be considered as 
a two-dimensional analysis in a non-optimal coordinate system. Surprisingly little 
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has been reported on the numcrical study of three-dimensional layers. Melkonian & 
Maslowe (1990) have integrated a simplified evolution equation and examined the 
evolution of a three-dimensional localized wave. They assumed that the charac- 
teristic length in the spanwise direction is much shorter than that in the streamwise 
direction, and thus retained a spanwise dispersion effect in the lowest approximation 
for small surface slope. However, they neglected the higher-order correction and 
consequently the destabilizing mean-flow and the stabilizing capillary effects. The 
evolution does not involve any instability and shows monotonic flattening of the initial 
disturbance. 

Experimental studies of falling films have been done by, among others, Kapitza & 
Kapitza (1949), Krantz & Goren (1971), Portalski & Clegg (1972), Alekseenko, 
Nakoryakov & Pokusaev (1985), and Lacy, Sheintuch & Dukler (1991). As 
summarized by Alekseenko et al., in most of the experiments performed, two- 
dimensional regular waves are observed only near the wave-inception line. The waves 
soon become three-dimensional and irregular. In order to obtain two-dimensional 
wavetrains, the flow was disturbed at a fixed frequency by, for example, wire 
vibrations (Krantz & Goren) and pulsations of the flow rate (Kapitza & Kapitza and 
Alekseenko et a,?.). 

I n  the present study, we discuss the dynamics of three-dimensional layers as 
described by the evolution equation. In particular, we report a new secondary 
instability of the two-dimensional permanent waves ; the two-dimensional finite- 
amplitude waves are unstable to infinitesimal three-dimensional disturbances. This 
instability may be responsible for the three-dimensional wave development observed 
in experiments. For vertical plates, the instability does not require a threshold 
amplitude of the two-dimensional waves and gives rise to a short-wave cutoff in the 
spanwise direction due to the capillarity. Although the physical mechanisms are 
different, the instability is analogous to  the secondary instability of the Tollmien- 
Schlichting waves in wall-bounded shear flows as described by Orszag & 
Patera (1983) and Herbert (1983). As did Orszag & Patera, we can examine the 
instability process in three steps : (i) primary linear instability on the undisturbed 
surface ; (ii) nonlinear equilibration of primary instability into two-dimensional 
finite-amplitude permanent waves ; (iii) secondary (three-dimensional) instability of 
the two-dimensional wave. 

I n  the case of wall-bounded shear flows, there is a threshold amplitude for the 
three-dimensional instability and when it arises it does so on the rapid convective 
timescale. I n  the present thin-layer flows, the instability is unconditional (at least for 
vertical layers), restricted to long waves, and viscous in nature, as is the primary 
instability. 

In $2, we review the primary instability and the nonlinear saturation. The finite- 
amplitude permanent waves are obtained by following the weakly nonlinear analysis 
of Gjevik (1970) and compared with nonlinear computations. In  $3, we identify the 
secondary instability by a linear analysis. I n  $4, the instability is studied further by 
posing various initial-value problems in three dimensions and integrating numeri- 
cally the strongly nonlinear evolution equation. Finally, in $5 we conclude by 
summarizing the results and discussing the new instability in relation to others 
known in the literature. 
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2. Primary instability and nonlinear saturation 
A three-dimensional Newtonian liquid of constant density p and viscosity p is 

flowing down a vertical plane due to gravity. The liquid layer has a mean thickness 
of do, and is bounded by an interface with a passive gas. The characteristic length 1 
in the streamwise or spanwise direction (proportional to a typical wavelength of the 
interface) is much larger than do,  and thus the long-wave asymptotics proposed by 
Benney (1966) allows description of the flow development. The full system of 
governing equation and boundary conditions than can be reduced into a single 
evolution equation for the local layer thickness h(x,  y ,  t )  : 

+O(S') = 0 1 
(Krishna & Lin 1977), where x and y are, respectively, streamwise and spanwise 
coordinates, and V is the gradient operator (a,, i3J. Here, h, the spatial coordinates, 
and t are scaled by do,  d o / € ,  and p d t / ( c p ) ,  respectively, where 8 = d , / l <  1. In (2.1), 
the Reynolds number is G ,  

where g is the gravitational acceleration, and the surface tension y is measured by 

2 PYdo 
3/42 * 

S=E - 

If one wishes to isolate do in G and obtain a measure of y independent of do,  then one 
may replace S by T,  

s = T G ~  (2.4) 

The second term in (2.1) describes the wave propagation. The term is nonlinear, 
and so describes local steepening of disturbance waves. The third term (or the first 
term in the square bracket) in (2.1) describes the mean flow, and is responsible for the 
surface-wave instability. The fourth term describes the stabilizing capillary effects. 

2.1. Primary instability 
The basic state for the primary instability is a uniform undisturbed state h = 1, and 
the stability analysis proceeds by imposing an infinitesimal harmonic disturbance 
with the wavenumber vector k = (kcos8, ksin8) on the (z,y)-plane. Equation (2.1) 
allows normal-mode representation for the disturbance, and the linearized phase 
speed cL and the linear growth rate r are found to be 

cL = G, (2.5) 

which clearly shows that for a given k two-dimensional transverse waves (8 = 0) are 
the preferred mode. Even for an oblique wave (0 =+ 0) ,  Roskes (1970) pointed out that 
(2.1) can be reduced to two dimensions by a simple coordinate rotation, or by 
replacing G cos 8 with G' and setting ag = 0. Therefore, we set 8 = 0, and concentrate 
on two-dimensional waves throughout this section. Since there is no hydrostatic 
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effect on vertical layers, the critical value of G is zero and surface waves will grow for 
all values of G as long as the disturbance wavenumber is smaller than the cutoff value 
k, = [2G2/(15S)]i. A maximum linear growth rate occurs a t  k = k, = k , / d 2 .  

The nature of the primary surface-wave instability can be studied by adopting the 
absolute/convective instability concepts, summarized by Huerre & Monkewitz 
(1990). In  convectively unstable flows, the growing disturbance wave moves away 
from its source, whereas in absolutely unstable flows, the instability contaminates 
the entire flow field. We follow the analysis of Deissler (1987) applied to a plane 
Poiseuille flow, and consider the evolution of a small localized disturbance, which can 
be expressed as 

(2.7) 

where h' = h-  1 and 

A ( k )  = - h'(x', O)e-ikz'dx'. (2.8) 2rt T --co 

Here, the wavenumber k and the frequency w are now both complex. The initial 
disturbance h'(x, 0) is localized, but still long enough to satisfy the basic assumptions 
made in (2.1); thus one must truncate these for large enough Ikl. 

The asymptotic behaviour of the disturbance for t+m can be examined by 
deforming the contour of integration in (2.7) into the complex-k plane, applying the 
method of steepest descent, and analysing the saddle point. If we now describe the 
flow in a reference frame moving at a speed V downstream, the long-time complex 
frequency I;) in that mowing frame becomes, from (2.1) and (2.7), 

d = w+ikV= ik(V-G)+sk2 (2.9) 

The saddle point is that k, k = k,, where 

- = i(V-G) +4ek 
d d  
dk 

(2.10) 

The linear growth rate of the disturbance is given by the real part Re (a), and this 
will reach its maximum when V = G (see Huerre & Monkewitz 1990). It will be zero 
at the upstream and downstream edges of the localized disturbance. Whether there 
is absolute or convective instability can then be determined by examining the sense 
of the velocity, V&,, of the upstream edge: if V,, < 0 (> 0), then the instability is 
absolute (convective). For example, if V,, > 0, the disturbance is moving downstream 
and an arbitrary fixed X-location will become free of disturbance as t+m. 

The present analysis is asymptotically valid only when G -  V = O ( E ) ,  since then k,, 
given by (2.10), is of unit order. Thus, this analysis determines whether there is 
absolute or convective instability for long waves and holds, as long as G is not too 
large and S is not too small. 

Figure 1 shows the growth rate Re (I;)) versus V for S = 5, E = 0.1, and four 
different values of G. For each case the maximum growth rate occurs a t  V = G, as 
discussed above. At this maximum, the k, a t  the saddle point is real and equals k,. 
This point is bracketed by the speeds of the up- and downstream edges. In  all cases 
shown, V,, is positive, which shows that the instability is convective whenever long- 
wave theory applies. 

In figure 2, the location of saddle points are plotted in the complex-k plane for 
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FIQURE 2. Location of the saddle points ks(V) in the complex-k plane; S = -, E = 

several values of G. The solid and dotted parts of the curves represent, respectively 
where Re (6) is positive and negative. The boundary between the solid and dotted 
parts located in the lower half-plane corresponds to V = F&,. The noses of the curves 
are always located on the real axis and are given by k = G/(15X)i. 

2.2 .  Nonlinear saturation 
The nonlinear evolution of the two-dimensional waves depends strongly on the initial 
wavenumber k. As shown by Lin (1969) and Gjevik (1970), among others, there exists 
a value of k, such that when k, < k < k,, the flow is supercritically stable and 
nonlinear equilibration occurs after the initial linear instability. When 0 < k < k,, on 
the other hand, nonlinearity promotes the instability, and the saturation does not 
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FIQURE 3. Linear/nonlinear stability diagram : S, linearly stable region ; U, linearly unstable 
region ; Super, supercritically unstable region ; Sub, subcritically unstable region ; line with arrow, 
fixed linear frequency kG. 

occur (subcritical bifurcation) at  least within the range of validity of the equation. 
Figure 3 shows the corresponding linear/nonlinear stability diagram. The critical 
Reynolds number G, is zero here because the layer is vertical. The curve with the 
arrow indicates a trajectory in which the linearized frequency kG is fixed as G is 
increased (see (2.5); it shows that if we lock the frequency of a wave generator, 
various regions can be reached by changing the Reynolds number. 

In the supercritical region, the evolution can be well approximated by the 
fundamental wave and its few lowest harmonics: 

N 

h(z ,  t )  = C A,(t) eiknz + c.c., 
n-o 

(2.11) 

where C.C. denotes complex conjugate and A ,  = 1. We follow Gjevik (1970) and set 
N =  2 in (2.11) to obtain a minimal representation; after substituting into (2.1), we 
obtain 

A, = a1 A1 + p1 AT A,  + y1IA1l2A, + 2y,lA212A,, (2.12) 

A,  = a2A2 +P,& + 2y,lA1l2A2 +Y21A212A2, (2.13) 

where the dot denotes time derivative, superscript * denotes complex conjugate, and 
the coefficients ut, P$ and y+ (i = 1,2)  are listed in Appendix A. As shown by Gjevik 
(1970), non-trivial steady solution (IAII = IA2 I = 4 = 0) exist when 

(2G2/15- k2S) (2G2/15-4k2S) < 0, (2.14) 

or equivalently k,  < k < k,, where $( t )  is the phase difference between the two modes. 
The upper bound for the inequality, k, = 2G2/( 15S), is the cutoff wavenumber from 
the linear theory, and the lower bound, k, = $kc determines the nature of the 
subsequent nonlinear evolution. The corresponding free-surface configuration, steady 
in a reference frame 2’ moving with a nonlinear phase velocity c ,  can be expressed as 

h(x’) = 1 +2[IA11 cos ( k z ’ ) +  lA21 cos (2k~’+$)],  (2.15) 

where c,  IA,J, q5 are given in Appendix B. 
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FIGURE 4. Saturated nonlinear two-dimensional permanent waves obtained from the truncated 
system(2.ll)withN= 2whenG = 5,T = 1,anda = 0.1: (a)magnitudesofmodesA,,andA,,versus 
the wavenumber k ;  ( b )  nonlinear phase speed c versus the wavenumber k. 

Figure 4 shows some of the features of the permanent wave (2.15) when G = 5, 
T = 1 ,  and e = 0.1. In figure 4(a) ,  the magnitudes IA,I are plotted for k, < k < k,. As 
k is decreased from k,, the amplitude lAll of the fundamental increases rapidly and 
reaches a maximum before k reaches k,. The magnitude JA,I of the harmonic 
increases monotonically and becomes dominant near k = k,. However, the accuracy 
of the truncated-equations analysis deteriorates near k, for the reasons stated below 
and so the diagrams in Figure 4 should be interpreted with care. In fact, the system 
(2.12), (2.13) is valid only when Hl1 9 and this ceases to hold near k = k,. Figure 
4 ( b )  shows the phase speed c of the finite-amplitude permanent wave. For G = 5 the 
linear theory gives that the phase speed is 5 (twice the maximum speed of the fluid 
in its basic state), and is indicated by the dotted horizontal line in the figure. Near 
k = k, the nonlinear phase speed decreases as k is decreased, and reached a minimum, 
after which it increases and reaches a maximum near k,. The decrease of the phase 
speed near k, is consistent with the higher-order (in 8 )  analyses of Lin (1969) and 
Chang (1989). 

Another way to obtain the finite-amplitude permanent wave and confirm the 
nonlinear saturation is to pose an initial-value problem in a periodic domain and 
integrate the evolution equation (2.1) numerically. Joo et al. (1991), for example, 
have done several calculations for different values of k. When k is sufficiently close 
to k,, the nonlinear equilibration occurs and the permanent wave is well described by 
(2.15). However, as k gets closer to k,, higher harmonics than those retained in (2.15) 
become important and the equilibrated state, if any, cannot be represented by (2.15). 
In fact, very close to k,, the permanent wave takes the form of a localized, periodic 
wave, which is rather broadbanded. Moreover, as discussed by Pumir et al. (1983), 
when G is larger than a certain critical value, the saturation near k, ceases to exist ; 
the criterion (2.14) becomes a poor estimate as G increases. The actual k, obtained 
through computation (large N )  would necessarily be larger than that from (2.14) 
except near the critical Reynolds number, here G, = 0. 

Figure 5 shows the evolution of each mode for three different values of k when 
G = 5, T = 1, e = 0.1 (kM = 0.99). A Fourier-spectral method is used in a periodic 
domain [ 0 , 2 x / k ]  with N = 16 for k = 1.2 and k = 1 and with N = 32 for k = 0.8. As 
shown in figure 5(b) for k = 1, two different initial disturbance amplitudes are used 
to show that the fate of the disturbance is not sensitive to initial amplitude. For all 
cases, the primary instability near t = 0 and subsequent nonlinear saturation are 
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FIGURE 5. Evolution of Fourier spectrum showing the nonlinear saturation of linearly unstable 
waves. Final states obtained from the truncated system (0) are shown for comparison. G = 5 ,  
T = 1, B = 0.1, and the disturbance wavenumbers (k, z 1): (a)  k = 1.2; ( b )  k = 1; (c) k = 0.8. 

seen. For k = 1.2 and 1, the equilibrated state can, indeed, be well described by the 
truncated series (2.15), as indicated in the figure. For k = 0.8, the truncated system 
(2.12), (2.13) appears to underestimate nonlinear interactions, and the modes 
predicted by (2.15) are substantially smaller in magnitude. Therefore, (2.15) can be 
a useful measure of the equilibrated state sufficiently far from k,. In  the following 
three-dimensional linear stability analysis, (2.15) will be used as the basic state, 
whereas in the full nonlinear computations in 84, the base state will be obtained 
through spectral computations, as in figure 5. 

3. Secondary three-dimensional spatially synchronous instability 
We now study the stability of the two-dimensional permanent waves to  

infinitesimal three-dimensional disturbances. The basic state E for this secondary 
instability is steady in a frame moving with the nonlinear phase speed c. Therefore, 
if we rewrite (2.1) using a coordinate transformation x’ = 2 - c t ,  the resulting 
equation allows a solution of the form 

h = E(x’) + 6[H(x’) eizy+ut + c.c.], (3.1) 

where $3 is the initial small amplitude, I is the spanwise wavenumber, and u is the 
linear growth rate of the three-dimensional disturbance. 
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We substitute (3.1) into (2.1) and linearize in S to obtain the following linear 
eigenvalue problem for H(x')  and u: 

4G2 - -, 2 G - ,  
3 ( P E " ' ) ' + ~ ( h 5 h )  +-hhh 

&S 

where prime denotes differentiation with respect to 5'. The coefficients in (3.2) are 
periodic in x', and the Floquet theorem allows us to express the solution of (3.2) as 

N 

Z Cneiknx', H = eihx' 

n--N 
(3.3) 

where the function represented by the finite Fourier sum has the same period 2nlk 
as the coefficients of (3.2) and h is the Floquet exponent. If h = 0 ,  the eigenfunction 
H has the same period as the base state h, and we are led to  study synchronous 
solutions with wavelength 2n/k, as performed by Orszag & Patera (1983) for wall- 
bounded shear flows. If h = +i, the principal subharmonic solutions can be studied, 
as Herbert (1983) examined for plane channel flow. In the present study, we set 
h = 0 in order to single out the three-dimensional synchronous instability. 

We set h = 0, and take N = 2 and c-, = cf in (3.3). The truncation is consistent 
with that of h, and by taking H to be real, u becomes real. This phase-locking of the 
three-dimensional waves with the two-dimensional field is also used by Orszag & 
Patera (1983) and can be easily seen in the computations. We substitute (3.3) into 
(3.2) to obtain a 5 x 5 real-eigenvalue matrix problem. The eigenvalues u are then 
obtained from the resulting fifth-degree characteristic equation. 

In figure 6, growth rates for five different values of k are plotted against the 
spanwise wavenumber 1 when G = 5, T = 1, and e = 0.1. The streamwise wave- 
number k determines the basic state h as illustrated in figure 4. The figure shows 
that two-dimensional permanent wave are unstable to three-dimensional dis- 
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FIQURE 7. Growth rates of the three-dimensional disturbance versus the spanwise wavenumber 
1 when T = 1 ,  E = 0.1, k = k,, and at the Reynolds numbers shown. 

turbances when the spanwise wavenumber is small enough. The secondary instability 
appears for long cross-stream waves and surface tension provides a short-wave 
cutoff, as in the primary instability. The spanwise cutoff wavenumber I, decreases 
monotonically toward zero as k approaches k,. Neither 1, nor the maximum growth 
rate reaches an extremum near k = 1.2, a t  which h has maximum amplitude. It 
appears that  the secondary instability is always present and does not involve a 
threshold amplitude of the basic state. If we allow higher-order nonlinear interactions 
by taking larger N i n  (2.11) and (3.2), the growth rate, and thus I,, tend to increase. 
This underestimation of instability by a truncated system is also observed by Orszag 
& Patera (1983) in their shear-flow instability theory. 

I n  figure 7,  growth rates are plotted for different values of G when T = 1, E = 0.1, 
and k = k, = G g / d l 5 .  As the mean layer thickness (or G )  decreases, the driving force 
for instability weakens, and the growth rate and I, decrease. The critical value of G 
for the secondary instability appears to  be zero, as for the primary instability, so that 
there is an unconditional instability of the two-dimensional wave. 

I n  figure 8, the cutoff wavenumber 1, of the secondary instability is plotted against 
G ,  while T = 1, E = 0.1, and k = k,. The basic state h, therefore, is the two- 
dimensional permanent wave equilibrated from disturbances with the maximizing 
wavenumber of the linear theory, i.e. (2.15) with k,. As G increases, I ,  increases, as 
seen also in figure 7 .  For moderate G(G < 7) ,  the increase is almost linear. A straight 
line I, = 0.072G is plotted for comparison. For large G ,  the increase becomes strongly 
nonlinear. When T is fixed a t  a constant value, the cutoff wavenumber k, for two- 
dimensional disturbance is proportional to G;. Therefore, the ratio lc /kc would 
increase weakly as G increases. 

In  figure 9 (a)  the maximum growth rate crM of the secondary instability is plotted 
when T = 1 , ~  = 0.1, and k = k,. For small G ,  the rate of increase of v, is small, but 
as G becomes large, the rate of increase becomes very large, showing a strong 
dependence of the secondary instability on the layer thickness. For fixed T, the 
maximum growth rate r, of the two-dimensional primary instability is proportional 
to GY. The ratio a,/T, of the maximum growth rate of the secondary instability to  
that  of the primary instability is plotted in figure 9 ( b ) .  It is seen that the relative 
growth rate of the secondary instability is small but increases with G .  
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FIGURE 8. Cutoff disturbance wavenumber 1, of the secondary three-dimensional instability 

with k = k, and T = 1. The broken line is for reference, 1, = 0.072G. 
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FIQURE 9. Maximum growth rate u, of the three-dimensional instability with k = k, and T = 1 : 
(a) u, vs. G ;  (b)  uM/rM vs. G, where r, denotes maximum growth rates of the two-dimensional 
surface-wave instability. 

4. Computations of three-dimensional layers 
In this section, we pose a series of initial-value problems that probes the nonlinear 

evolution of three-dimensional layers as related to the secondary instability identified 
in $3. The evolution equation (2.1) is integrated temporally by a Hamming modified 
predictor-corrector method with a Fourier spectral method for spatial derivatives. 
The initial time marching is done by a fourth-order Runge-Kutta method, and the 
maximum At is set to while the actual At is adjusted automatically to satisfy an 
absolute error bound set to lo-". The spatial resolution is secured by taking a 
minimum collocation of 16 x 16. 

The boundary conditions are periodicity on a domain 0 < x  < 2n/k and 
0 < y < 2x11. We use the following two sets of initial conditions: 

(i) a two-dimensional permanent wave plus a small spanwise perturbation, 

h = E(x';k)-6,cos(ly); (4.1) 

FLM 242 18 
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FIQURE 10. Evolution of the norms N, (-) and N,  (---) with the initial condition (4.1) when 
a = 5,  T = 1, E = 0.1, k = 1, and I = 0.5 : a three-dimensionally stable evolution. 

(ii) a small harmonic disturbance to the planar interface in both streamwise and 
spanwise directions, 

(4.2) 
Here, 6, = 0.01 and 6, = 6; = 0.05. The initial condition (4.1) allows us to examine 
the secondary instability and study its nonlinear behaviour. The basic state h, as 
shown in figure 5 ,  is obtained from spectral computation, so that we can examine the 
instability closer to  k, than allowed by the series truncation of $3. The initial 
condition (4.2) provides insight into the formation of three-dimensional structures 
for given comparable perturbations in x and y. 

4.1. Case 1 
We first experiment with the initial condition (4.1) for G = 5, T = 1, and e = 0.1. We 
take k = 1 and different values of I ;  note that the truncated system gives 1, x 0.35. 
The Fourier spectrum of the basic state E has already been illustrated in figure 5 ( b ) .  

In  figure 10, we take 1 = 0.5, which lies outside of the unstable range in figure 6. 
Capillary forces will suppress the spanwise perturbation, and thus the two- 
dimensional permanent wave E will be recovered. This stable evolution is illustrated 
by plotting two norms, N, and N,, which measure the streamwise and spanwise 
components of the total wave energy, respectively : 

h = 1 - 6, cos (kx) - 6; cos (Zy). 

where the Fourier spectra a,, and bm are obtained from 
N M 

h(x,y,t) = C an(y,t)eiknx+c.c. = bn(z,t)eiZm~+c.c.  
n-0 m=O 

(4.4) 

(4.5) 

When t = 0, the norms in figure 10 indicate that a small spanwise disturbance (or N,) 
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FIGURE 11.  A three-dimensionally unstable evolution for initial condition (4.1): G = 5, T = 1, 
E = 0.1, k = 1, and I = 0.25. (a) Evolution of the normsNZ (-) andN, (---); ( b )  configuration of 
the free surface at t = 158; (c) contours of constant thickness at t = 158; (d )  configuration of the 
free surface at t = 183; (e) contours of constant thickness at t = 183. 
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is added to the larger two-dimensional basic state (or N,). Initially, N, and N, show, 
respectively, substantial increase and decrease from their initial states. However, N, 
eventually decays to zero, while N, increases and recovers its initial value ; the two- 
dimensional permanent wave is recovered. The oscillations of N, suggests that the 
flow is not monotonically stable. This transiency stems from the strong thickness- 
dependence of the local phase speed. The spanwise disturbance imposed on the 
saturated two-dimensional wave that travels with constant phase speed (no 
streamwise variation) induces the spanwise variation of the phase speed, resulting in 
the tendency toward three-dimensional patterns. When I > Z,, however, the surface 
tension eventually damps the spanwise perturbation. Thus for sufficiently larger 1 the 
flow becomes monotonically stable, whereas for 1 closer to 1, the transiency is more 
pronounced. 

In figure 11, the spanwise wavenumber I = 0.25, which lies inside the unstable 
region in figure 6.  Small initial disturbance will grow, giving rise to three-dimensional 
structures. The norms plotted in figure 11 (a )  show the initial three-dimensional 
instability, consistent with the analysis in the previous section, followed by a series 
of growth/decay. These oscillations are reminiscent of the recurrence of the 
Fermi-Pasta-Ulam type (Fermi et al. 1955), an example of which is shown 
numerically by Yuen & Ferguson (1978) in their study of the nonlinear Schrodinger 
equation associated with Benjamin-Feir instability. The system considered in figure 
11 is dissipative, and true ‘recurrence ’ does not occur. Near the maxima in Nu, the 
surface wave is strongly three-dimensional, whereas near the minima, it is weakly so. 
Near the minima, the crests and the troughs of the spanwise wave component are 
lined up at  about the same streamwise location, as shown in figure 11 (b ,  c). However, 
the crests travel faster downstream making the surface shape more three-dimensional 
until Nu reaches a maximum, as in figure 11 (d ,  e). The crests then start to catch up 
with the troughs downstream, and nearly line up with them near the next minimum 
ofN,. Other calculations (not shown in the figure) show that the temporal oscillation 
period (locally) of N, decreases with the increase of the disturbance amplitude 8,. 

The computation of layers with sufficiently long spanwise disturbances shows the 
secondary three-dimensional instability and subsequent nonlinear evolutions. The 
three-dimensional mode grows initially, but stays bounded at least within the 
integration time performed (e.g. up to t = 800 for figure 11). The surface configuration 
evolves into a strongly three-dimensional pattern, and then into a more weakly 
three-dimensional one, followed by an irregular ‘recurrence ’ between these two 
patterns. This process continues without reaching any well-defined state, and there 
is no indication that the instability leads to a three-dimensional saturation. 

4.2. Case 2 
We now use the initial condition (4.2) and study the nonlinear evolution of 
disturbances that are harmonic in both the streamwise and spanwise directions. We 
set G = 5, T = 1, and E = 0.1, as before. 

In figure 12, k = 1 and I = 0.5. The wavenumbers are identical to those in figure 
10. The evolution of the two norms are plotted up to t = 350. Initially N, and N, are 
equal in magnitude because the amplitudes 6, and 6; are equal. As the fluid flows 
downstream, the wave amplitude grows due to the primary surface-wave instability. 
As in figure 10, the spanwise wavenumber is larger than 1, but not large enough for 
the capillary forces to cause monotonic decay of spanwise modes. Accordingly, both 
N, and N, increase with time until they reach maxima at about t = 13, after which 
oscillatory behaviour is observed. Eventually N,  increases to its value for the two- 
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FIGURE 13. Same as figure 12 but  when 2 = 0.25. 

dimensional equilibrated state, while Nu decays to zero, resulting in the same purely 
two-dimensional permanent wave as in figure 10. The two different initial conditions 
lead to identical equilibrated states. 

Figure 13 shows the evolution of the two norms up to t = 200 when k = 1 and 
2 = 0.25. The wavenumbers are identical to those in figure 11, in which the secondary 
instability is exhibited. For small time, the wave amplitude grows due to the primary 
surface-wave instability. The spanwise wavenumber is small enough (1  < Zc), so that 
the three-dimensional instability is present. The norm N, also oscillates but 
continues to grow toward the value for saturation, shown in figure 5(b). In the 
subsequent evolution, both N, and Nu are bounded, but do not show any equilibration 
to  steady or periodic states up to t = 400. 

The computations of three-dimensional layers with the initial condition (4.2) show 
the two-dimensional and the three-dimensional instabilities. When the spanwise 
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wavenumber is large, only the two-dimensional instability is present. The initial 
three-dimensional disturbance thus develops into the same two-dimensional 
permanent wave as that which evolves from the initial condition (4.1), if identical 
streamwise wavenumbers are used. When the spanwise wavenumber is small enough, 
a three-dimensional state will result. As in Case 1, no equilibration to a three- 
dimensional permanent wave is found. 

4.3. Case 2 for k < k, 
In this case, we use streamwise wavenumbers that are smaller than the two- 
dimensional saturation value k, ; two-dimensional equilibration does not occur. The 
evolution is again very much dependent upon the spanwise wavenumber 1. If 1 is 
large, the initial three-dimensional disturbance will become two-dimensional, giving 
rise to the aforementioned tendency toward wavebreaking or unbounded growth. If 
1 is sufficiently small, the disturbance will stay three-dimensional. In this case, the 
amplitude and the local slope of the disturbance stay bounded, but the evolution is 
irregular, showing no indication of equilibration to any permanent states. 

5. Concluding remarks 
In  the present study, we have tried to understand the complicated behaviour of a 

thin three-dimensional viscous layer falling down a vertical plane by studying the 
long-wave evolution equation of Benney type. Relatively small Reynolds numbers 
and relatively large surface tensions are posed as illustrative cases for the dynamics. 

As the fluid flows downstream, the surface-wave instability sets in and a wave 
motion is exhibited a t  the interface. Owing to the capillary stabilization of short 
waves, the surface waves that appear are very long compared to the layer thickness. 
The linear analysis of this surface-wave instability shows that two-dimensional 
(transverse) waves are preferred. It also shows that for the thin layers that we study 
with realistically large surface tension, the instability is convective. The nonlinear 
analyses and computations show that the fate of a two-dimensional wave depends 
strongly upon its wavelength. When the wave is short enough (k, < k < k,), it can 
develop into a permanent wave as it flows downstream. On the other hand, when the 
wave is very long (k < ks), the nonlinear interactions promote the growth, and an 
incipient wavebreaking or a catastrophic growth may be encountered. 

The subcritical behaviour that occurs for k < ks cannot be adequately described by 
the evolution equation (2.1), because the long-wave approximation is violated as the 
wavenumber spectrum broadens. The incipient wavebreaking and the catastrophic 
growth obtained via the evolution equation may not be observed if the full 
Navier-Stokes equation is considered. Using a spectral-element method, Ho & 
Patera (1991) integrated the NavierStokes equation, and obtained equilibrated 
wavetrains with k < k,. The Reynolds number considered is much larger than that 
in the present study, and a specific nonlinear initial state is used in obtaining the 
permanent wave. 

The two-dimensional equilibrated layers that result for k, < k < k, are susceptible 
to a secondary three-dimensional instability. When one considers spatially 
synchronous instabilities and the streamwise wavenumber k is sufficiently close to k,, 
the two-dimensional wave can be described by a truncated Fourier series, and a 
linear analysis can be carried out for the secondary instability. This linear stability 
analysis of the truncated system gives a spanwise cutoff wavenumber and maximum 
growth rate that are smaller than those for the two-dimensional instability and 
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FIGURE 14. Critical wavelength A for the three-dimensional instability versus mean layer 
thickness do. L = 2n(R+d,) ,  where R is the radius of a cylinder. 

increase with the Reynolds number. Unlike other spatially synchronous secondary 
instabilities that appear on a rapid convective timescale in shear flows with large 
Reynolds number, the present secondary instability is viscous in nature, as in the 
primary surface-wave instability. At  least for vertical layers, the instability does not 
require a threshold amplitude, so that the three-dimensional instability is always 
present. 

The nonlinear evolution of layers subject to the three-dimensional instability is 
studied by numerically integrating the evolution equation (2.1). It also relaxes the 
restriction on k, imposed in the truncated system. The unstable modes stay bounded, 
but there is no indication of three-dimensional saturation. Other computations with 
different initial conditions show highly irregular nonlinear behaviour when the 
spanwise wavenumber is small enough to make the two-dimensional wave unstable. 

The three-dimensional instability identified in the present study seems at  least 
qualitatively related to a recent experimental observation of Lacy et al. (1991). They 
examined thin viscous films flowing down a vertical cylinder, and noted that the film 
that has a two-dimensional ring structure that becomes three-dimensional further 
downstream as the ring distorts, with some portions of the ring falling more rapidly. 
This transition to three-dimensional waves far downstream from the wave inception 
has also been observed in many earlier studies including that of Alekseenko et al. 
(1985), who reported that two-dimensional waves soon become three-dimensional. 

The secondary three-dimensional instability studied above applies to layers on an 
infinite plane. If a layer flows down a vertical cylinder, a geometrical constraint is 
imposed on the disturbance wavelength. As the layer thickness is decreased, longer 
disturbance is required for the instability to occur, as shown in figure 8. On the 
cylindrical surface, the wavelength cannot exceed the circumferential length 
L = 2n(R + do) ,  where R is the radius of the cylinder and do is again the mean thickness 
of the layer. If we assume that the cutoff wavenumber decreases linearly with the 
Reynolds number, in view of figure 8, it is deduced that the dimensional wavelength 
h for the three-dimensional instability is proportional to l / d : .  Therefore, as shown 
in figure 14, for a fixed radius R there is a critical thickness (do)c  below which no 
three-dimensional instability can be present. In  the experiment of Lacy et al. (1991), 
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the radius R = 50.8 mm (L z 326 mm) and the mean layer thickness do is of the order 
of 1 mm. If the surface tension of the glycerine-water-NaOH solution is assumed to 
be that of pure water, the estimated critical thickness (d& is about 0.01 mm, which 
is much smaller than a typical do used in the experiment. The layer thus is susceptible 
to the three-dimensional instability, and indeed shows three-dimensional develop- 
ments as mentioned above. 

The linear analysis and the computations above have been confined to layers with 
fixed spatial period, and the instability that we identified is spatially synchronous 
with the given two-dimensional wave. As a result, wave crests of consecutive waves 
are aligned. There may additionally be spatially subharmonic instabilities as 
discussed in $3. Prokopiou, Chen & Chang (1991) have identified such an instability 
for 1 = 0 in cases where the Reynolds number is rather large. This mode can be 
understood in the present case of small Reynolds number if one refers to figure 3. 
Given a two-dimensional wave with k = k@) (> kJ, one can fmd a permanent two- 
dimensional wave. If one perturbs this by another two-dimensional wave with 
k = gk(2), and since +k(2) < k,, we have the equivalent of a two-dimensional computation 
of the evolution equation on a box of length 47r/k(2), and we know that disturbances 
will display incipient breaking or catastrophic growth. In  either case we know that 
the evolution equation is incapable of describing the long-time evolution and it 
remains an open question whether or not the apparent instability is a physical one. 
Suppose that this instability were physical and 1 = 0 still. Then the two-dimensional 
waves would modulate pairwise. If the spatially subharmonic instability were 
present only for I $: 0, then the wave crests on alternate waves would be aligned and 
a herringbone pattern would be present (see Herbert 1983, figure 1 for analogous 
behaviour in shear flows). New, carefully controlled experiments are required to 
resolve this issue. 

The authors gratefully acknowledge Professor S. G. Bankoff for his initial 
contributions and great help. They also thank Professor A. Bayliss, H.-C. Chang, and 
J. Gollub for valuable discussions. This work was supported by the US Department 
of Energy, Division of Basic Energy Sciences, through Grant no. DE FG02- 
86ER13641. 

Appendix A. Coefficients of equations (2.12), (2.13) 
a1 = -ikG+k2(&G2-k2S), = -2ikG+k2(iG2-21k2S), 

y1 = -ikG+k2(2G2-3k2S), a2 = -2ikG+4k2(&G2-4k2S), 

P2 = -2ikG+2k2($G2-3k2S), y2 = -2ikG+4k2(2G2- 12k2S). 

Appendix B. Equations for c,IA,J, and # of two-dimensional permanent 
waves 

Here, subscripts r and i denote, respectively, real and imaginary parts. 
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